ASSESSMENT OF SEIZURE ACTIVITY IN THE TELEMETERED DOG: A NEW PROCEDURE USING THE RODENTPACK SYSTEM
Guillaume Froget(1), Guillaume Peyon(1), Kevin Bigot(2), Jean-Gérard Napoléoni(2) and Elise Esneault(1)
(1) Porsolt, Le Genest-Saint-Isle, France. (2) EMKA, Paris, France.

INTRODUCTION

Studies on proconvulsant risk represent an important step in the drug development process, even if they are not included in the core battery for safety pharmacology. Evaluation in the dog may complement rodent studies, as it facilitates the simultaneous analysis of both neuronal and non-neuronal parameters within a single experiment. The aim of this study was to validate the use of a novel telemetry system in the dog, usually recommended for applications in the rat.

METHODS

• Treatment: Pilocarpine (5mg/kg/min) was dispersed in 0.2% hydroxypropylmethylcellulose in physiological saline and was administered by intravenous infusion (9 mL/kg/hour) using a perfusor. Gamma-butyrolactone (GBL) was dissolved in distilled water and was administered orally at 1000 mg/kg.
• Surgery: Two dogs were implanted with two surface electrodes placed over the fronto-parietal cortex. The electrodes were connected to small plugs, placed into a connector and the whole assembly was secured on the skull of the animal with dental cement. After surgery, a collar was placed around the neck of the dog to protect the implant, until the end of the experiment.
• EEG and video monitoring: A rodentPACK telemetry transmitter (EMKA Technologies) was plugged to the head connector. All generated data was acquired and analysed using the EMKA Technologies software (IOX version 2.8.2.10 and ECG-Auto version 2.6.0.20). The quality of the signals was checked in restrained or non-restrained conditions. Behavior/Purpose of convulsions was confirmed using video-recordings.
• Restricted conditions: The dogs were placed in a sling during EEG recordings. As soon as the first convulsive symptoms/seizure activity were observed, an intravenous bolus of diazepam (0.2 mL/kg, 1 mL/kg) was administered.
• Non-restrained conditions: The dogs were placed individually within their home cage close to a telemetry receiver and both EEG and video were continuously recorded.

RESULTS

Figure 1. EEG recordings in control conditions

Figure 2. EEG recording after administration of treatments

Figure 3. Spectral EEG analysis after administration of GBL

CONCLUSION

The use of the rodentPACK system with synchronized video in the dog can be a valuable tool for the assessment of proconvulsant risk of novel pharmacological substances in the context of safety pharmacology studies in the dog. The use of this system in non-restrained conditions may be advantageous in limiting the impact of stress on brain activity and allowing for an increase in the duration of EEG recording. When there is a high probability of seizure, the restrained conditions should be preferred for ethical reasons.